Generalized SSPRT for Fault Identification and Estimation of Linear Dynamic Systems Based on Multiple Model Algorithm

نویسندگان

  • Ji Zhang
  • Yu Liu
  • Xuguang Li
چکیده

The generalized Shiryayev sequential probability ratio test (SSPRT) is applied to linear dynamic systems for single fault isolation and estimation. The algorithm turns out to be the multiple model (MM) algorithm considering all the possible model trajectories. In real application, this algorithm must be approximated due to its increasing computation complexity and the unknown parameters of the fault severeness. The Gaussian mixture reduction is employed to address the problem of computation complexity. The unknown parameters are estimated in real time by model augmentation based on maximum likelihood estimation (MLE) or expectation. Hence, the system state estimation, fault identification and estimation can be fulfilled simultaneously by a multiple model algorithm incorporating these two techniques. The performance of the proposed algorithm is demonstrated by Monte Carlo simulation. Although our algorithm is developed under the assumption of single fault, it can be generalized to deal with the case of (infrequent) sequential multiple faults. The case of simultaneous faults is more complicated and will be considered in future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Type Estimation in Power Systems

This paper presents a novel approach for fault type estimation in power systems. The Fault type estimation is the first step to estimate instantaneous voltage, voltage sag magnitude and duration in a three-phase system at fault duration. The approach is based on time-domain state estimation where redundant measurements are available. The current based model allows a linear mapping between the m...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Robust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance

This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...

متن کامل

Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping

This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...

متن کامل

Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network

Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014